Bonn Agreement Oil Appearance Code

BAOAC

Bonn Agreement Oil Appearance Code A correlation between the visual appearance and the thickness of oil on the sea used to estimate spilled oil volume

Developing the BAOAC

- Literature survey (1997)
 - Who had claimed what and when ? Scientifically justified ?
- Laboratory studies
 - Thin oil films studied under laboratory conditions
- Fjord studies
 - Small-scale outdoor experiments
- Bonnex 2002
 - Full-scale experiments at sea

The BAOAC

Code	Appearance	QUANTITY m³/ km²	Thickness (μm)
1	Sheen (Silvery / Grey)	0.04 - 0.3	0.04 - 0.3
2	Rainbow	0.30 - 5.0	0.3 – 5.0
3	Metallic	5.0 - 50	5 - 50
4	Discontinuous True Oil Colour	50 - 200	50 - 200
5	Continuous True Oil Colour	> 200	> 200

Observing Oil On The Sea

- A combination of reflected and transmitted light is seen when looking at oil on the sea
- With thin layers of oil you see the light reflected from the sea surface, filtered through a layer of oil
- With thick layers of oil you see only the surface of the oil

Appearance Code 1

Sheen (0.04 μ m – 0.3 μ m) The oil layer reflects white light slightly more effectively than the water.

Appearance Code 2

Rainbow Region (0.3 μ m to 5 μ m)

Light reflected from both oil/water surface (the sea surface) and oil/air surface (the oil surface)

Appearance Code 3

Metallic (3 μ m to 50 μ m)

Majority of light is reflected from oil surface, but a minority passes through oil film and is reflected from sea surface.

Appearance Codes 4 and 5

Discontinuous True Colour and True Colour ($50\mu m - < 200 \mu m$)

Light is being reflected from the oil surface rather than from the sea surface

The True Colour of Oils

- Crude oils are black or brown
- Diesel fuel is nearly colourless
- Heavy Fuel Oils are black
- The observed colour depends on oil film thickness
 - Optical density of oil
 - Background
 - Viewing angle

HEAVY FUEL OIL

THE OIL APPEARANCE CODE

CODE	APPEARANCE	QUANTITY m³ / km²	THICKNESS µm
1	SHEEN (SILVERY / GREY)	0.04 - 0.3	0.04 - 0.3
2	RAINBOW	0.3 – 5.0	0.3 - 5.0
3	METALLIC	5.0 – 50	5 – 50
4	DISCONTINUOUS TRUE OIL COLOUR	50 – 200	50 – 200
5	TRUE COLOUR	200 - > 200	200 - > 200

Appearance Description

SHEEN: SILVERY / GREY – ALL OILS WILL APPEAR THE

SAIME

RAINBOW: RANGE OF COLOURS – ALL OILS WILL APPEAR

THE SAME

METALLIC: A HOMOGENEOUS COLOUR – DEPENDENT ON THE

LIGHT AND SKY CONDITIONS - A BLUE SKY WILL

BE MIRRORED IN THE OIL

DISCONTINUOUS THE BROKEN NATURE OF THE COLOUR, DUE TO

TRUE COLOUR: THINNER AREAS WITHIN THE SLICK IS

DESCRIBED AS DISCONTINUOUS. THE TRUE

COLOUR OF THE OIL WILL GRADUALLY

DOMINATE.

TRUE COLOUR: TRUE COLOUR IS OIL SPECIFIC

"Metallic" a mirror to the sky

Oil layers that look metallic reflect the colour of the sky, but with some element of oil colour

Using the BAOAC to obtain spilled oil volume estimates

- Estimate slick length
- Estimate slick width
- Estimate oil coverage as percentage
- Calculate total slick area
- Estimate proportions of different BAOAC Codes
- © Calculate spilled oil volumes (minimum and maximum) in each Code area
- Calculate minimum and maximum spilled oil volume

AREA MEASUREMENT

VISUAL OBSERVATION / MEASUREMENT OF SLAR IMAGE

- 1. LENGTH X WIDTH = AREA OF 'IMAGINARY' RECTANGLE
- 2. ESTIMATED AREA OF 'IMARGINARY' COVERED WITH OIL AS A PERCENTAGE.
- 3. CALCULATE THE AREA COVERED WITH OIL LENGTH X WIDTH X COVERAGE % = AREA

L E N G T H

WIDTH

OILED AREA MEASUREMENT

AREA ADJUSTMENT (CLEAR WATER)

UV / VISUAL ASSESSMENT

(AREAS OF CLEAR WATER WITHIN THE OIL

EXPRESSED AS A PERCENTAGE %)

AREA X ADJUSTMENT % = OILED AREA

PERCENTAGE OF OILED AREA COVERED BY APPEARANCE

MINIMUM VOLUME CALCULATION

- 1. LENGTH X WIDTH = RECTANGLE AREA
- 2. RECTANGLE AREA X PERCENTAGE % COVERAGE = AREA
- 3. AREA X 'CLEAR WATER' ADJUSTMENT % = OILED AREA
- 4. OILED AREA X INDIVIDUAL APPEARANCE AREA (EXPRESSED AS A PERCENTAGE OF THE OILED AREA) = AREA OF OIL APPEARANCE
- 5. AREA OF OIL APPEARANCE X MINIMUM THICKNESS = MINIMUM VOLUME FOR THAT OIL APPEARANCE
- 6. AS PARA 5 ABOVE FOR EACH APPEARANCE (MINIMUM VOLUME)
- 7. ADD UP ALL THE MAXIMUM VOLUMES FOR ALL THE OIL APPEARANCES TO FIND THE 'OVERALL' MINIMUM VOLUME.

MIMIMUM VOLUME CALCULATION EXAMPLE

- 1. 12 KM X 2 KM = 24 KM²
 (LENGTH X WIDTH = RECTANGLE AREA)
- 2. 24KM² X 50% = 12 KM²
 (RECTANGLE AREA X PERCENTAGE % COVERAGE = AREA (OR POLYGON)
- 3. 12 KM² X 90% = 10.8 KM²
 (AREA X 'CLEAR WATER' ADJUSTMENT % = OILED AREA)
- 4. 10.8 KM² X 50% (SHEEN) = 5.4 KM²
 (OILED AREA X INDIVIDUAL APPEARANCE AREA (EXPRESSED AS A PERCENTAGE OF THE OILED AREA) = AREA OF OIL APPEARANCE)
- 5. 5.4 KM² X 0.04um (MIMIMUM THICKNESS FOR SHEEN) = 0.216 m³ (AREA OF OIL APPEARANCE X MINIMUM THICKNESS = MINIMUM VOLUME FOR THAT OIL APPEARANCE)
- 6. AS PARA 5 ABOVE FOR EACH APPEARANCE (MINIMUM VOLUME)
- 7. ADD UP ALL THE MINIMUM VOLUMES FOR ALL THE OIL APPEARANCES TO FIND THE 'OVERALL' MINIMUM VOLUME.

MAXIMUM VOLUME CALCULATION

- 1. LENGTH X WIDTH = RECTANGLE AREA
- 2. RECTANGLE AREA X PERCENTAGE % COVERAGE = OUTSIDE AREA
- 3. OUTSIDE AREA X 'CLEAR WATER' ADJUSTMENT % = OILED AREA
- 4. OILED AREA X INDIVIDUAL APPEARANCE AREA (EXPRESSED AS A PERCENTAGE OF THE OILED AREA) = AREA OF OIL APPEARANCE
- 5. AREA OF OIL APPEARANCE X MAXIMUM THICKNESS = MAXIMUM VOLUME FOR THAT OIL APPEARANCE
- 6. AS PARA 5 ABOVE FOR EACH APPEARANCE (MAXIMUM VOLUME)
- 7. ADD UP ALL THE MAXIMUM VOLUMES FOR ALL THE OIL APPEARANCES TO FIND THE 'OVERALL' MAXIMUM VOLUME.

MAXIMUM VOLUME CALCULATION EXAMPLE

- 1. 12 KM X 2 KM = 24 KM²
 (LENGTH X WIDTH = RECTANGLE AREA)
- 2. 24KM² X 50% = 12 KM²
 (RECTANGLE AREA X PERCENTAGE % COVERAGE = AREA (OR POLYGON)
- 3. 12 KM² X 90% = 10.8 KM²
 (AREA X 'CLEAR WATER' ADJUSTMENT % = OILED AREA)
- 4. 10.8 KM² X 50% (SHEEN) = 5.4 KM²
 (OILED AREA X INDIVIDUAL APPEARANCE AREA (EXPRESSED AS A PERCENTAGE OF THE OILED AREA) = AREA OF OIL APPEARANCE)
- 5. 5.4 KM² X 0.3um (MAXIMUM THICKNESS FOR SHEEN) = 1.62 m³ (AREA OF OIL APPEARANCE X MAXIMUM THICKNESS = MAXIMUM VOLUME FOR THAT OIL APPEARANCE)
- 6. AS PARA 5 ABOVE FOR EACH APPEARANCE (MAXIMUM VOLUME)
- 7. ADD UP ALL THE MAXIMUMMUM VOLUMES FOR ALL THE OIL APPEARANCES TO FIND THE 'OVERALL' MAXIMUM VOLUME.

AREA CALCULATION

DIMENSIONS		AREA ASSESSED COVERAGE		POLYGON OR CALCULATED	ASSESSED ADJUSTMENT	OILED AREA	
LENGTH	WIDTH		PERCENTAGE	AREA	PERCENTAGE		
12 km	2 km	24 km²	50 %	12 km ²	90 %	10.8 km²	

'OIL' APPEARANCE / VOLUME CALCULATION

OIL APPEARANCE DESCRIPTION	% OF OILED AREA COVERED BY APPEARANCE	OILED AREA	AREA OF OIL APPEARANCE	MINIMUM	NOTAWE WINIWAW	MAXIMUM THICKNESS	MAXIMUM VOLUME
SHEEN	50 %	10.8 km²	5.4 km²	0.04 µm	0.216 m³	0.30 µm	1.62m ³
RAINBOW	30 %	10.8 km²	3.24 km²	0.30 μm	0.972 m³	5.00 μm	16.2m³
METALLIC	15 %	10.8 km²	1.62 km²	5.00 μm	8.1m³	50.0 μm	81m³
DIS. TRUE COLOUR	-%	10.8 km²		50.0 μm		200 µm	
TRUE COLOUR	5 %	10.8 km²	0.54 km²	2 00 μm	108m³	> 20 0 µm	>108m³
OTHER	-%	10.8 km²					
ľOťAL	100 %						

TOTAL MINIMUM 'OIL' VOLUME

117.288 m³

TOTAL MAXIMUM 'OIL' VOLUME

> 206.82 m³